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LETTER TO THE EDITOR 

Acceleration boundary for an electrically charged particle 
within the field of a rotating magnetic dipole 

K 0 Thielheim 
Institut fur Reine und Angewandte Kernphysik, Abteilung Mathematische Physik, Univer- 
sity of Kiel, Kiel, West Germany 

Received 13 October 1986, in final form 3 November 1986 

Abstract. Certain aspects of the dynamics of electrically charged mass points in the vacuum 
field of a magnetic dipole rotating at an angular velocity perpendicular to the dipole vector 
are discussed. These aspects concern the so-called acceleration boundary, i.e. the limits 
of the spatial region in which particles such as protons and electrons, for example, are 
accelerated to extremely high energies. The analytical expression found for the radius of 
the range of influence defined in this sense for the rotating magnetic dipole in units of the 
light radius is found to be proportional to the Srd power of the magnetic dipole moment 
and to the trd power of the angular velocity. 

In this letter I wish to discuss certain aspects of the dynamics of a particle of mass m 
and electric charge e within the electromagnetic vacuum field of a magnetic dipole 
rotating at an angular velocity o perpendicular to the dipole vector p. It is expected 
that some features of this configuration may become relevant for a theoretical under- 
standing of cosmic-ray particle acceleration in pulsar magnetospheres. But it should 
also be made clear that the present results do not as yet claim to offer a self-consistent 
comprehensive theory of pulsars as cosmic-ray particle accelerators. 

The problem described above has been treated recently through numerical integra- 
tion of the Lorentz-Dirac equation for protons and electrons for a wide range of 
parameter values w and p [ 1,2]. A typical set of parameter values is w = 2077 s- '  and 
p = 103'G cm'. For example, the trajectories as well as the energy changes of protons 
initially at rest at certain specified positions within the electromagnetic field of the 
spinning dipole have been calculated [3]. 

Among other findings, the existence of a 'critical surface' for protons has been 
discovered, dividind the space around the dipole into two regimes: an interior one, 
from which the protons are drawn towards the dipole, and an exterior one, from which 
they are accelerated to very high energies and propagated to very large distances. 

It has also been found that the near-field contributions are essential for those 
protons which achieve extremely high energies. But outside a certain range of distance 
from the spinning dipole the relative importance of the near-field contributions 
diminishes and the pure wave field approximation becomes applicable. For the typical 
set of parameter values this transition has been found to take place at about 1.000 
light radii distance from the dipole. The light radius is defined by rL  = c / w  = A/277.  

Furthermore it has been found that radiation reaction on protons may be neglected 
within the range of applicability of the pure wave field approximation. 
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It is inside this range of applicability of the pure wave field approximation that 
the ability of the electromagnetic field to accelerate protons to very high energies and 
to propagate them to very large distances is found to break down within a comparatively 
narrow interval of initial radial distance. The topography of this 'acceleration boundary' 
for protons can therefore be studied by numerical integration of the equation of motion 

d e e 
-( y u )  = --E +-[U, B ]  
dt  m mc 

where E and B are the appropriate electric and magnetic field vectors, respectively, 
representing a spherical wave of the amplitude 

E = B - p / r t r  (2) 

where r is the distance from the spinning dipole. This wave is linearly polarised within 
the equatorial plane-with the electric vector perpendicular to this plane-and cir- 
cularly polarised along the axis of rotation. It is elliptically polarised in the intermediate 
region. U = (U,, U,,, U,) is the velocity vector of the proton and y = (1 - U'/ u')"'~ is its 
Lorentz factor. Although written in a non-covariant form, the equation of motion (1) 
is correct as far as special relativity and classical electrodynamics are concerned and 
as long as radiation reaction may be neglected. 

In what follows, I will discuss the 'acceleration boundary' with restriction to the 
equatorial plane, where the outgoing wave is linearly polarised, as was said before. 
Also, since this is a very localised phenomenon in terms of the radial coordinate r, it 
may be dealt with approximately using plane waves 

H = zOB COS[W( t - x / c ) ]  (4) 

instead of spherical ones. xo, yo and are unit vectors defining a Cartesian coordinate 
system in which xo coincides with the direction of the propagation of the electromagnetic 
wave. 

The components of the equation of motion (1) are 

with wL = eB/ mc. An additional, though redundant, equation 

d 
d t  
-( y c )  = wru, COS[@( t - x/c)] 

is obtained through multiplication of equation (1) by U. 
From the combination of equations ( 5 )  and (8) one obtains 
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which means that the differential of the eigentime d r =  y- ’  dt  equals the differential 
of phase, d r  = d( t - x /  c ) .  For the purposes of this letter it is sufficient to choose the 
following initial conditions: x = y = z = 0 and T = 0 for t = 0. The initial phase thus 
corresponds to maximum field strength. Furthermore U, = U, = U, = 0 for t = 0. Under 
these specifications the eigentime is equal to the phase of the particle, 7 = t - x / c .  
Equation ( 6 )  may be integrated: 

yu, = ( w L / w ) c  sin(wr) ( 1 0 )  

and inserted into equation ( 5 ) :  

which can then be integrated twice: 

y u x / c = f ( w L / W ) 2 [ 1  -cos(2wr) ]  ( 1 2 )  

x / i h  = ( l / S r ) ( ~ ~ / w ) ~ [ 2 ~ 7 - s i n ( 2 w r ) ] .  ( 1 3 )  
The x component of the relativistic velocity is a periodic function of the eigentime 7 
with a maximum value 

max( y u x / c )  = $ ( w L / w ) 2 .  (14) 

xp = {( W L /  0 y A. ( 1 5 )  

As may be seen from equations ( 1 2 )  and (13) the x component of the relativistic 
velocity experiences its strongest increase as a function of the x coordinate at the very 
beginning of the trajectory, where 

yv, /c  = ( 6 2 ’ 3 / 2 ) ( w L x / c ) 2 ’ 3 .  ( 1 6 )  

At x = i x p  the particle passes from the region where it is accelerated with respect to 
the x coordinate into a region where it is decelerated due to the reversal of the field 
vectors. Eventually the x component of the relativistic velocity becomes zero at T = r / w ,  
from where the cycle starts again. 

Locally the conditions within the spherical wave field for all practical purposes are 
the same as in the plane wave field. Introducing the parameter 

The length of one period with respect to the x coordinate is 

rT = ( e p / m c 2 ) ” 2  ( 1 7 )  

yu, /c  = ( 6 2 ’ 3 / 2 ) ( r T / r L ) 4 ’ 3 ( x / r o ) 2 ’ 3 .  (18) 

which is related to the parameters defined previously through w L / w  = r%/rLro ,  equation 
( 1 6 )  may be written as 

But on a larger scale the motion of the particle is modified by the decrease in the field 
amplitude with increasing radial distance. For example, the field amplitude is reduced 
by the factor 4 within an interval of radial distance xD = ro.  Obviously in the spherical 
wave field there is competition between the two parameters xD = ro and 

(19) 
4 2  x p  = f r r , - / r L r o  

as far as their dependence on the initial radial distance ro is concerned. 
At a comparatively large distance from the spinning dipole one has xp<< x D .  Then 

an oscillatory behaviour of y u , / c  is expected to be qualitatively similar to the one in 
the plane wave field. 
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At a comparatively small distance from the spinning dipole one has xP>>xD. In 
this regime the particle is not expected to pass into the region of deceleration with 
respect to the x coordinate before the field amplitude has decreased considerably. 
Therefore in this case yux/ c will not be brought down to zero but instead will approach 
a certain asymptotic value (with the superposition of a small decreasing oscillating 
modulation). 

The transition between these two regimes, i.e. the position of the 'acceleration 
boundary', is thus expected to occur at about xp = xD, corresponding to the radial 
distance 

rB = ( r T / r L ) 1 ' 3 r T  

which, alternatively, may be written in the form 

For the typical set of parameter values suggested at the start of this letter one finds 
rL= 5 x 10' cm, rT = 5 x 10" cm and consequently rB = lo4 rL. 
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